TY - JOUR
T1 - Metal- and covalent-organic framework mixed matrix membranes for CO2 separation
T2 - a perspective on stability and scalability
AU - Shan, Meixia
AU - Geng, Xiumei
AU - Imaz, Inhar
AU - Broto-Ribas, Anna
AU - Ortín-Rubio, Borja
AU - Maspoch, Daniel
AU - Ansaloni, Luca
AU - Peters, Thijs A.
AU - Tena, Alberto
AU - Boerrigter, Marcel E.
AU - Vermaas, David A.
PY - 2024
Y1 - 2024
N2 - Membrane technology has attracted great industrial interest in carbon capture and separation owing to the merits of energy-efficiency, environmental friendliness and low capital investment. Conventional polymeric membranes for CO2 separation suffer from the trade-off between permeability and selectivity. Introducing porous fillers in polymers is one approach to enhance membrane separation performance. Metal-organic frameworks (MOFs), with ordered porous structure and diverse chemical functionalities, are promising fillers to prepare mixed matrix membranes (MMMs) for CO2 separation. However, the main issue of MOF based MMMs in industry is their stability and processability. This review analyses recent work on stable and scalable MOF based MMMs for CO2 separation. The typical stable MOFs, MOF-based MMMs and the scalable MOF synthesis are summarized. A large number of MOF-based MMM suffer from instability upon exposure to contaminants. For that reason, we also discuss the use of covalent organic frameworks (COFs) as an alternative to prepare MMMs for CO2 separation, considering their excellent stability and good compatibility with polymers. Finally, a brief conclusion and current challenges on obtaining scalable and stable MMMs are outlined. This review may provide some guidance for designing high performance MMMs for industrial CO2 capture and separation to help achieving carbon neutrality.
AB - Membrane technology has attracted great industrial interest in carbon capture and separation owing to the merits of energy-efficiency, environmental friendliness and low capital investment. Conventional polymeric membranes for CO2 separation suffer from the trade-off between permeability and selectivity. Introducing porous fillers in polymers is one approach to enhance membrane separation performance. Metal-organic frameworks (MOFs), with ordered porous structure and diverse chemical functionalities, are promising fillers to prepare mixed matrix membranes (MMMs) for CO2 separation. However, the main issue of MOF based MMMs in industry is their stability and processability. This review analyses recent work on stable and scalable MOF based MMMs for CO2 separation. The typical stable MOFs, MOF-based MMMs and the scalable MOF synthesis are summarized. A large number of MOF-based MMM suffer from instability upon exposure to contaminants. For that reason, we also discuss the use of covalent organic frameworks (COFs) as an alternative to prepare MMMs for CO2 separation, considering their excellent stability and good compatibility with polymers. Finally, a brief conclusion and current challenges on obtaining scalable and stable MMMs are outlined. This review may provide some guidance for designing high performance MMMs for industrial CO2 capture and separation to help achieving carbon neutrality.
UR - http://www.scopus.com/inward/record.url?scp=85178268172&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2023.122258
DO - 10.1016/j.memsci.2023.122258
M3 - Review article
AN - SCOPUS:85178268172
SN - 0376-7388
VL - 691
JO - Journal of Membrane Science
JF - Journal of Membrane Science
M1 - 122258
ER -