TY - JOUR
T1 - Microstructure, mechanical, and corrosion properties of Zr1-xCrxBy diboride alloy thin films grown by hybrid high power impulse/DC magnetron co-sputtering
AU - Bakhit, Babak
AU - Dorri, Samira
AU - Kosari, Ali
AU - Mol, Arjan
AU - Petrov, Ivan
AU - Birch, Jens
AU - Hultman, Lars
AU - Greczynski, Grzegorz
PY - 2022
Y1 - 2022
N2 - We study microstructure, mechanical, and corrosion properties of Zr1-xCrxBy coatings deposited by hybrid high-power impulse/DC magnetron co-sputtering (CrB2-HiPIMS/ZrB2-DCMS). Cr/(Zr + Cr) ratio, x, increases from 0.13 to 0.9, while B/(Zr + Cr) ratio, y, decreases from 2.92 to 1.81. As reference, ZrB2.18 and CrB1.81 layers are grown at 4000 W DCMS. ZrB2.18 and CrB1.81 columns are continual from near substrate toward the surface with open column boundaries. We find that the critical growth parameter to achieve dense films is the ratio of Cr+-dominated ion flux and the (Zr + B) neutral flux from the ZrB2 target. Thus, the alloys are categorized in two groups: films with x < 0.32 (low Cr+/(Zr + B) ratios) that have continuous columnar growth, rough surfaces, and open column boundaries, and films with x ≥ 0.32 (high Cr+/(Zr + B) ratios) that Cr+-dominated ion fluxes are sufficient to interrupt continuous columns, resulting in smooth surface and dense fine-grain microstructure. The pulsed metal-ion irradiation is more effective in film densification than continuous Ar+ bombardment. Dense Zr0.46Cr0.54B2.40 and Zr0.10Cr0.90B1.81 alloys are hard (>30 GPa) and almost stress-free with relative nanoindentation toughness of 1.3 MPa√m and 2.3 MPa√m, respectively, and remarkedly low corrosion rates (∼1.0 × 10-6 mA/cm2 for Zr0.46Cr0.54B2.40 and ∼ 2.1 × 10-6 mA/cm2 for Zr0.10Cr0.90B1.81).
AB - We study microstructure, mechanical, and corrosion properties of Zr1-xCrxBy coatings deposited by hybrid high-power impulse/DC magnetron co-sputtering (CrB2-HiPIMS/ZrB2-DCMS). Cr/(Zr + Cr) ratio, x, increases from 0.13 to 0.9, while B/(Zr + Cr) ratio, y, decreases from 2.92 to 1.81. As reference, ZrB2.18 and CrB1.81 layers are grown at 4000 W DCMS. ZrB2.18 and CrB1.81 columns are continual from near substrate toward the surface with open column boundaries. We find that the critical growth parameter to achieve dense films is the ratio of Cr+-dominated ion flux and the (Zr + B) neutral flux from the ZrB2 target. Thus, the alloys are categorized in two groups: films with x < 0.32 (low Cr+/(Zr + B) ratios) that have continuous columnar growth, rough surfaces, and open column boundaries, and films with x ≥ 0.32 (high Cr+/(Zr + B) ratios) that Cr+-dominated ion fluxes are sufficient to interrupt continuous columns, resulting in smooth surface and dense fine-grain microstructure. The pulsed metal-ion irradiation is more effective in film densification than continuous Ar+ bombardment. Dense Zr0.46Cr0.54B2.40 and Zr0.10Cr0.90B1.81 alloys are hard (>30 GPa) and almost stress-free with relative nanoindentation toughness of 1.3 MPa√m and 2.3 MPa√m, respectively, and remarkedly low corrosion rates (∼1.0 × 10-6 mA/cm2 for Zr0.46Cr0.54B2.40 and ∼ 2.1 × 10-6 mA/cm2 for Zr0.10Cr0.90B1.81).
KW - Corrosion protection
KW - Diboride alloys
KW - Mechanical properties
KW - Microstructure
KW - Thin films
KW - Zirconium diborides
UR - http://www.scopus.com/inward/record.url?scp=85127186649&partnerID=8YFLogxK
U2 - 10.1016/j.apsusc.2022.153164
DO - 10.1016/j.apsusc.2022.153164
M3 - Article
AN - SCOPUS:85127186649
SN - 0169-4332
VL - 591
JO - Applied Surface Science
JF - Applied Surface Science
M1 - 153164
ER -