Abstract
Seismic interferometry (SI) retrieves new seismic responses between receivers or sources using, e.g., cross-correlation. Applying SI to a reflection survey with active sources and receivers at the surface, one retrieves ghost reflections besides the physical reflections. Ghost reflections are retrieved from the correlation of two primary reflections or multiples from two different depth levels. They are only sensitive to the changes in the layer that cause them to appear in the result of SI.
Using ghost reflections from SI, we investigate the possibility of monitoring pore-pressure depletion due to gas extraction in the Groningen gas field, Netherlands. We performed an active-source transmission laboratory experiment to measure S-wave velocities at pore pressures of 50, 80, 100, 200, and 300 bar. Using these values; we numerically model scalar reflection data with sources and receivers at the surface for the Groningen subsurface model. Applying SI by auto-correlation to these datasets, we retrieve zero-offset ghost reflections. We show that using only the reflections from the top and the bottom of the reservoir is essential for retrieving a specific ghost reflection from inside the reservoir. The retrieved ghost reflections showed clear time differences, indicating they can be utilized to monitor reservoir pore-pressure depletion changes.
Using ghost reflections from SI, we investigate the possibility of monitoring pore-pressure depletion due to gas extraction in the Groningen gas field, Netherlands. We performed an active-source transmission laboratory experiment to measure S-wave velocities at pore pressures of 50, 80, 100, 200, and 300 bar. Using these values; we numerically model scalar reflection data with sources and receivers at the surface for the Groningen subsurface model. Applying SI by auto-correlation to these datasets, we retrieve zero-offset ghost reflections. We show that using only the reflections from the top and the bottom of the reservoir is essential for retrieving a specific ghost reflection from inside the reservoir. The retrieved ghost reflections showed clear time differences, indicating they can be utilized to monitor reservoir pore-pressure depletion changes.
Original language | English |
---|---|
Number of pages | 5 |
DOIs | |
Publication status | Published - 2023 |
Event | 84th EAGE ANNUAL Conference and Exhibition 2023 - Vienna, Austria Duration: 5 Jun 2023 → 8 Jun 2023 Conference number: 84 |
Conference
Conference | 84th EAGE ANNUAL Conference and Exhibition 2023 |
---|---|
Abbreviated title | EAGE 2023 |
Country/Territory | Austria |
City | Vienna |
Period | 5/06/23 → 8/06/23 |
Datasets
-
Supporting data for the article "Feasibility of reservoir monitoring in the Groningen gas field using ghost reflections from seismic interferometry"
Shirmohammadi, F. (Creator), Draganov, D. S. (Creator), Veltmeijer, A. V. (Creator), Naderloo, M. (Creator) & Barnhoorn, A. (Creator), TU Delft - 4TU.ResearchData, 2023
DOI: 10.4121/F6A4AD46-C1AA-4C09-A0A9-3A3558763D59
Dataset/Software: Dataset