TY - JOUR
T1 - Nanopores
T2 - A versatile tool to study protein Dynamics
AU - Schmid, Sonja
AU - Dekker, Cees
N1 - Accepted Author Manuscript
PY - 2021
Y1 - 2021
N2 - Proteins are the active workhorses in our body. These biomolecules perform all vital cellular functions from DNA replication and general biosynthesis to metabolic signaling and environmental sensing.While static 3D structures are now readily available, observing the functional cycle of proteins-involving conformational changes and interactions-remains very challenging, e.g., due to ensemble averaging. However, time-resolved information is crucial to gain a mechanistic understanding of protein function. Single-molecule techniques such as FRET and force spectroscopies provide answers but can be limited by the required labelling, a narrow time bandwidth, and more. Here, we describe electrical nanopore detection as a tool for probing protein dynamics. With a time bandwidth ranging from microseconds to hours, nanopore experiments cover an exceptionally wide range of timescales that is very relevant for protein function. First, we discuss the working principle of label-free nanopore experiments, various pore designs, instrumentation, and the characteristics of nanopore signals. In the second part, we review a few nanopore experiments that solved research questions in protein science, and we compare nanopores to other single-molecule techniques. We hope to make electrical nanopore sensing more accessible to the biochemical community, and to inspire new creative solutions to resolve a variety of protein dynamics-one molecule at a time.
AB - Proteins are the active workhorses in our body. These biomolecules perform all vital cellular functions from DNA replication and general biosynthesis to metabolic signaling and environmental sensing.While static 3D structures are now readily available, observing the functional cycle of proteins-involving conformational changes and interactions-remains very challenging, e.g., due to ensemble averaging. However, time-resolved information is crucial to gain a mechanistic understanding of protein function. Single-molecule techniques such as FRET and force spectroscopies provide answers but can be limited by the required labelling, a narrow time bandwidth, and more. Here, we describe electrical nanopore detection as a tool for probing protein dynamics. With a time bandwidth ranging from microseconds to hours, nanopore experiments cover an exceptionally wide range of timescales that is very relevant for protein function. First, we discuss the working principle of label-free nanopore experiments, various pore designs, instrumentation, and the characteristics of nanopore signals. In the second part, we review a few nanopore experiments that solved research questions in protein science, and we compare nanopores to other single-molecule techniques. We hope to make electrical nanopore sensing more accessible to the biochemical community, and to inspire new creative solutions to resolve a variety of protein dynamics-one molecule at a time.
UR - http://www.scopus.com/inward/record.url?scp=85105026737&partnerID=8YFLogxK
U2 - 10.1042/EBC20200020
DO - 10.1042/EBC20200020
M3 - Review article
AN - SCOPUS:85105026737
SN - 0071-1365
VL - 65
SP - 93
EP - 107
JO - Essays in biochemistry
JF - Essays in biochemistry
IS - 1
ER -