Nonlinear Repetitive Control for Mitigating Noise Amplification

Leontine Aarnoudse, Alexey Pavlov, Johan Kon, Tom Oomen

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

Abstract

Repetitive control can lead to high performance by attenuating periodic disturbances completely, yet it may amplify non-periodic disturbances. The aim of this paper is to achieve both fast learning and low errors in repetitive control. To this end, a nonlinear learning filter is introduced that distinguishes between periodic and non-periodic errors based on their typical amplitude characteristics to adapt the extent to which they are included in the repetitive controller. Convergence conditions for the nonlinear repetitive control system are derived by casting the resulting closed-loop as a discrete-time convergent system. Simulation results of the proposed approach demonstrate fast learning and small errors.

Original languageEnglish
Title of host publicationProceedings of the 62nd IEEE Conference on Decision and Control (CDC 2023)
PublisherIEEE
Pages2891-2896
Number of pages6
ISBN (Electronic)979-8-3503-0124-3
DOIs
Publication statusPublished - 2023
Event62nd IEEE Conference on Decision and Control, CDC 2023 - Singapore, Singapore
Duration: 13 Dec 202315 Dec 2023

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference62nd IEEE Conference on Decision and Control, CDC 2023
Country/TerritorySingapore
CitySingapore
Period13/12/2315/12/23

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Nonlinear Repetitive Control for Mitigating Noise Amplification'. Together they form a unique fingerprint.

Cite this