Numerical Simulations of Effects of the Layout of Permeable Pile Groin Systems on Longshore Currents

Rong Zhang, Yongping Chen*, Peng Yao, Marcel J.F. Stive, Jian Zeng*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

43 Downloads (Pure)

Abstract

Coastal permeable groins have been used to protect beaches from erosion for centuries. However, the hydraulic functioning of permeable groins has not been fully understood and their design heavily depends on engineering experiences. In this study, numerical experiments were executed to investigate the effects of layout configurations of a permeable groin system on longshore currents. The non-hydrostatic SWASH (Simulating WAve till SHore) model was employed to carry out the numerical simulations. Two data sets obtained from physical laboratory experiments with different permeable groin layouts on different slopes are used to validate the accuracy of the model. Then, the longshore current reduction by the permeable groin system with varying configuration parameters (e.g., groin spacing, groin length) was numerically investigated under different environmental conditions (e.g., a slight or a moderate wave climate). From the calculation results of numerical experiments, it is indicated that permeable groins function efficiently to reduce the maximal longshore current velocity under the condition that the groin length ranges from 84% and 109% of the wave breaker zone width. The longshore current reduction rate monotonously decreases with the increase in groin spacing; permeable pile groin functions best to reduce longshore current with the minimal groin spacing-groin length ratio 1:1 among the range between 1:1 and 2:1. When the groin spacing–groin length ratios are 1:1 and 1.5:1, the longshore current reduction is not sensitive to the investigated wave conditions in this study. When the spatial ratio is 2:1, the permeable pile groin system functions worse under a moderate wave climate than under a slight wave climate, from the view of longshore current reduction.
Original languageEnglish
Article number1823
Number of pages18
JournalJournal of Marine Science and Engineering
Volume11
Issue number9
DOIs
Publication statusPublished - 2023

Keywords

  • permeable pile groin
  • layout design
  • SWASH
  • longshore current
  • longshore current reduction

Fingerprint

Dive into the research topics of 'Numerical Simulations of Effects of the Layout of Permeable Pile Groin Systems on Longshore Currents'. Together they form a unique fingerprint.

Cite this