PDRs4All: A JWST Early Release Science Program on radiative feedback from massive stars

Olivier Berne Berne, Emilie Habart, Jan Cami, S.M. Cazaux, Els Peeters, Emmanuel Dartois, Sílvia Vicente, Mark G. Wolfire, Felipe Alarcón, More Authors

Research output: Contribution to journalArticleScientificpeer-review

17 Citations (Scopus)
141 Downloads (Pure)

Abstract

Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter-and circumstellar media including diffuse clouds, proto-planetary disks, and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the James Webb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template data sets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template data sets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations.
Original languageEnglish
Article number054301
Pages (from-to)054301
Number of pages32
JournalAstronomical Society of the Pacific. Publications
Volume134
Issue number1035
DOIs
Publication statusPublished - 2022

Fingerprint

Dive into the research topics of 'PDRs4All: A JWST Early Release Science Program on radiative feedback from massive stars'. Together they form a unique fingerprint.

Cite this