Predicting network dynamics without requiring the knowledge of the interaction graph

Bastian Prasse, Piet Van Mieghem

Research output: Contribution to journalArticleScientificpeer-review

55 Downloads (Pure)


A network consists of two interdependent parts: the network topology or graph, consisting of the links between nodes and the network dynamics, specified by some governing equations. A crucial challenge is the prediction of dynamics on networks, such as forecasting the spread of an infectious disease on a human contact network. Unfortunately, an accurate prediction of the dynamics seems hardly feasible, because the network is often complicated and unknown. In this work, given past observations of the dynamics on a fixed graph, we show the contrary: Even without knowing the network topology, we can predict the dynamics. Specifically, for a general class of deterministic governing equations, we propose a two-step prediction algorithm. First, we obtain a surrogate network by fitting past observations of every nodal state to the dynamical model. Second, we iterate the governing equations on the surrogate network to predict the dynamics. Surprisingly, even though there is no similarity between the surrogate topology and the true topology, the predictions are accurate, for a considerable prediction time horizon, for a broad range of observation times, and in the presence of a reasonable noise level. The true topology is not needed for predicting dynamics on networks, since the dynamics evolve in a subspace of astonishingly low dimension compared to the size and heterogeneity of the graph. Our results constitute a fresh perspective on the broad field of nonlinear dynamics on complex networks.

Original languageEnglish
Article numbere2205517119
Pages (from-to)e2205517119
Number of pages9
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number44
Publication statusPublished - 2022


  • dynamics on networks
  • network reconstruction
  • predicting dynamics


Dive into the research topics of 'Predicting network dynamics without requiring the knowledge of the interaction graph'. Together they form a unique fingerprint.

Cite this