TY - JOUR
T1 - Prediction of oxide phases formed upon internal oxidation of advanced high-strength steels
AU - Mao, W.
AU - Sloof, Willem G.
AU - Hendrikx, Ruud W.A.
PY - 2017
Y1 - 2017
N2 - The effect of Cr on the oxidation of Fe–Mn-based steels during isothermal annealing at different dew points was investigated. The Fe–Mn–Cr–(Si) phase diagrams for oxidizing environments were computed to predict the oxide phases. Various Fe–Mn steels with different concentrations of Cr and Si were annealed at 950 °C in a gas mixture of Ar or N2 with 5 vol% H2 and dew points ranging from − 45 to 10 °C. The identified oxide species after annealing match with those predicted based on the phase diagrams. (Mn,Fe)O is the only oxide phase formed during annealing of Fe–Mn binary steel alloys. Adding Cr leads to the formation of (Mn,Cr,Fe)3O4 spinel. The dissociation oxygen partial pressure of (Mn,Cr,Fe)3O4 in the Fe–Mn–Cr steels is lower than that of (Mn,Fe)O. The Si in the steels results in the formation (Mn,Fe)2SiO4, and increasing the Si concentration suppresses the formation of (Mn,Cr,Fe)3O4 and (Mn,Fe)O during annealing.
AB - The effect of Cr on the oxidation of Fe–Mn-based steels during isothermal annealing at different dew points was investigated. The Fe–Mn–Cr–(Si) phase diagrams for oxidizing environments were computed to predict the oxide phases. Various Fe–Mn steels with different concentrations of Cr and Si were annealed at 950 °C in a gas mixture of Ar or N2 with 5 vol% H2 and dew points ranging from − 45 to 10 °C. The identified oxide species after annealing match with those predicted based on the phase diagrams. (Mn,Fe)O is the only oxide phase formed during annealing of Fe–Mn binary steel alloys. Adding Cr leads to the formation of (Mn,Cr,Fe)3O4 spinel. The dissociation oxygen partial pressure of (Mn,Cr,Fe)3O4 in the Fe–Mn–Cr steels is lower than that of (Mn,Fe)O. The Si in the steels results in the formation (Mn,Fe)2SiO4, and increasing the Si concentration suppresses the formation of (Mn,Cr,Fe)3O4 and (Mn,Fe)O during annealing.
KW - Advanced high-strength steels
KW - Annealing
KW - Oxidation
KW - Thermodynamics
UR - http://resolver.tudelft.nl/uuid:e84d568b-395f-4911-af2c-4a106677b891
UR - http://www.scopus.com/inward/record.url?scp=85032833898&partnerID=8YFLogxK
U2 - 10.1007/s11085-017-9815-4
DO - 10.1007/s11085-017-9815-4
M3 - Article
AN - SCOPUS:85032833898
SN - 0030-770X
VL - 89 (June 2018)
SP - 531
EP - 549
JO - Oxidation of Metals
JF - Oxidation of Metals
IS - 5-6
ER -