Properties of sputtered BaSi2 thin films annealed in vacuum condition

Research output: Contribution to journalArticleScientificpeer-review

3 Citations (Scopus)

Abstract

As a potential absorber candidate for high-efficient solar cell applications, BaSi2 films are confronted with issues of surface oxidation associated with the higherature annealing. Herein, BaSi2 films are deposited by the sputtering technique. A vacuum annealing process is subsequently carried out to crystallize sputtered BaSi2 films. Raman spectroscopy is used to study surface structures and crystalline quality. Elemental depth profile is measured by Auger Electron spectroscopy to understand the compositions of films. Optical and electrical properties are further investigated to reveal the effects of annealing condition. Applying vacuum annealing condition can effectively suppress diffusions of Ba and ensures a stochiometric BaSi2 layer. However, surface oxidation still occurs even in the vacuum environment owing to the high reactivity of Ba. Further attempts to prevent BaSi2 surface oxidation may focus on the combination of other methods, such as capping layer and reducing atmosphere, with vacuum (or low-pressure) annealing condition.

Original languageEnglish
Article numberSFFA03
Pages (from-to)SFFA03-1 - SFFA03-4
Number of pages5
JournalJapanese Journal of Applied Physics
Volume59
Issue numberSF
DOIs
Publication statusPublished - 2020

Fingerprint Dive into the research topics of 'Properties of sputtered BaSi<sub>2</sub> thin films annealed in vacuum condition'. Together they form a unique fingerprint.

Cite this