Quantum dot arrays in silicon and germanium

W. I.L. Lawrie, H. G.J. Eenink, N. W. Hendrickx, J. M. Boter, L. Petit, S. V. Amitonov, M. Lodari, B. Paquelet Wuetz, C. Volk, S. G.J. Philips, G. Droulers, N. Kalhor, F. Van Riggelen, D. Brousse, A. Sammak, L. M.K. Vandersypen, G. Scappucci, M. Veldhorst*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

97 Citations (Scopus)
97 Downloads (Pure)

Abstract

Electrons and holes confined in quantum dots define excellent building blocks for quantum emergence, simulation, and computation. Silicon and germanium are compatible with standard semiconductor manufacturing and contain stable isotopes with zero nuclear spin, thereby serving as excellent hosts for spins with long quantum coherence. Here, we demonstrate quantum dot arrays in a silicon metal-oxide-semiconductor (SiMOS), strained silicon (Si/SiGe), and strained germanium (Ge/SiGe). We fabricate using a multi-layer technique to achieve tightly confined quantum dots and compare integration processes. While SiMOS can benefit from a larger temperature budget and Ge/SiGe can make an Ohmic contact to metals, the overlapping gate structure to define the quantum dots can be based on a nearly identical integration. We realize charge sensing in each platform, for the first time in Ge/SiGe, and demonstrate fully functional linear and two-dimensional arrays where all quantum dots can be depleted to the last charge state. In Si/SiGe, we tune a quintuple quantum dot using the N + 1 method to simultaneously reach the few electron regime for each quantum dot. We compare capacitive crosstalk and find it to be the smallest in SiMOS, relevant for the tuning of quantum dot arrays. We put these results into perspective for quantum technology and identify industrial qubits, hybrid technology, automated tuning, and two-dimensional qubit arrays as four key trajectories that, when combined, enable fault-tolerant quantum computation.

Original languageEnglish
Article number080501
Number of pages9
JournalApplied Physics Letters
Volume116
Issue number8
DOIs
Publication statusPublished - 2020

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Quantum dot arrays in silicon and germanium'. Together they form a unique fingerprint.

Cite this