Rational Basis Functions in Iterative Learning Control for Multivariable Systems

Maurice Poot, Jim Portegies, Dragan Kostić, Tom Oomen

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

Abstract

Feedforward control with task flexibility for MIMO systems is essential to meet ever-increasing demands on throughput and accuracy. The aim of this paper is to develop a framework for data-driven tuning of rational feedforward controllers in iterative learning control (ILC) for noncommutative MIMO systems. A convex optimization problem in ILC is achieved by rewriting the nonlinear terms in the control scheme as a function of the previous feedforward parameters. A simulation study on an multivariable industrial printer shows that the developed framework converges and achieves significant better performance than direct application of the RBF algorithm using SK-iterations for SISO systems.

Original languageEnglish
Title of host publicationProceedings of the 62nd IEEE Conference on Decision and Control (CDC 2023)
PublisherIEEE
Pages4644-4649
Number of pages6
ISBN (Electronic)979-8-3503-0124-3
DOIs
Publication statusPublished - 2023
Event62nd IEEE Conference on Decision and Control, CDC 2023 - Singapore, Singapore
Duration: 13 Dec 202315 Dec 2023

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference62nd IEEE Conference on Decision and Control, CDC 2023
Country/TerritorySingapore
CitySingapore
Period13/12/2315/12/23

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Rational Basis Functions in Iterative Learning Control for Multivariable Systems'. Together they form a unique fingerprint.

Cite this