TY - JOUR
T1 - Receptivity of crossflow instability to discrete roughness amplitude and location
AU - Zoppini, G.
AU - Westerbeek, S.
AU - Ragni, D.
AU - Kotsonis, M.
PY - 2022
Y1 - 2022
N2 - The effect of discrete roughness elements on the development and breakdown of stationary crossflow instability on a swept wing is explored. Receptivity to various element heights and chordwise locations is explored using a combination of experimental and theoretical tools. Forcing configurations, determined based on linear stability predictions, are manufactured and applied on the wing in a low turbulence facility. Measurements are performed using infrared thermography, quantifying the transition front location, and planar particle image velocimetry, providing a reconstruction of stationary crossflow instabilities and their associated growth. Measurements are corroborated with simulations based on nonlinear parabolised stability equations. Results confirm the efficacy of discrete roughness elements in introducing and conditioning stationary crossflow instabilities. Primary instability amplitudes and resulting laminar-turbulent transition location are found to strongly depend on both roughness amplitude and chordwise location. The Reynolds number based on element height is found to satisfactorily approximate the initial forcing amplitude, revealing the importance of local velocity effects in non-zero-pressure gradient flows. Direct estimation of initial perturbation amplitudes from nonlinear simulations suggests the existence of pertinent flow mechanisms in the element vicinity, active in conditioning the onset of modal instabilities. Dedicated velocimetry planes, elucidate the development of a momentum deficit wake which rapidly decays downstream of the element followed by mild growth, representing the first experimental evidence of transient behaviour in swept wing boundary layers. The outcome of this work identifies a strong scalability of the transition dynamics to roughness amplitude and location, warranting the upscaling of roughness elements to more accessible, measurable and spatially resolved configurations in future experiments.
AB - The effect of discrete roughness elements on the development and breakdown of stationary crossflow instability on a swept wing is explored. Receptivity to various element heights and chordwise locations is explored using a combination of experimental and theoretical tools. Forcing configurations, determined based on linear stability predictions, are manufactured and applied on the wing in a low turbulence facility. Measurements are performed using infrared thermography, quantifying the transition front location, and planar particle image velocimetry, providing a reconstruction of stationary crossflow instabilities and their associated growth. Measurements are corroborated with simulations based on nonlinear parabolised stability equations. Results confirm the efficacy of discrete roughness elements in introducing and conditioning stationary crossflow instabilities. Primary instability amplitudes and resulting laminar-turbulent transition location are found to strongly depend on both roughness amplitude and chordwise location. The Reynolds number based on element height is found to satisfactorily approximate the initial forcing amplitude, revealing the importance of local velocity effects in non-zero-pressure gradient flows. Direct estimation of initial perturbation amplitudes from nonlinear simulations suggests the existence of pertinent flow mechanisms in the element vicinity, active in conditioning the onset of modal instabilities. Dedicated velocimetry planes, elucidate the development of a momentum deficit wake which rapidly decays downstream of the element followed by mild growth, representing the first experimental evidence of transient behaviour in swept wing boundary layers. The outcome of this work identifies a strong scalability of the transition dynamics to roughness amplitude and location, warranting the upscaling of roughness elements to more accessible, measurable and spatially resolved configurations in future experiments.
KW - absolute/convective instability
KW - boundary layer receptivity
KW - transition to turbulence
UR - http://www.scopus.com/inward/record.url?scp=85128284310&partnerID=8YFLogxK
U2 - 10.1017/jfm.2022.220
DO - 10.1017/jfm.2022.220
M3 - Article
AN - SCOPUS:85128284310
VL - 939
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
SN - 0022-1120
M1 - A33
ER -