TY - JOUR
T1 - S5P TROPOMI NO2 slant column retrieval
T2 - Method, stability, uncertainties and comparisons with OMI
AU - Van Geffen, Jos
AU - Folkert Boersma, K.
AU - Eskes, Henk
AU - Sneep, Maarten
AU - Ter Linden, Mark
AU - Zara, Marina
AU - Pepijn Veefkind, J.
PY - 2020
Y1 - 2020
N2 - The Tropospheric Monitoring Instrument (TROPOMI), aboard the Sentinel-5 Precursor (S5P) satellite, launched on 13 October 2017, provides measurements of atmospheric trace gases and of cloud and aerosol properties at an unprecedented spatial resolution of approximately 7 × 3:5 km2 (approx. 5:5 × 3:5 km2 as of 6 August 2019), achieving near-global coverage in 1 d. The retrieval of nitrogen dioxide (NO2) concentrations is a three-step procedure: slant column density (SCD) retrieval, separation of the SCD in its stratospheric and tropospheric components, and conversion of these into vertical column densities. This study focusses on the TROPOMI NO2 SCD retrieval: the retrieval method used, the stability of the SCDs and the SCD uncertainties, and a comparison with the Ozone Monitoring Instrument (OMI) NO2 SCDs. The statistical uncertainty, based on the spatial variability of the SCDs over a remote Pacific Ocean sector, is 8.63 μmol m-2 for all pixels (9.45 μmol m-2 for clear-sky pixels), which is very stable over time and some 30 % less than the long-term average over OMI-QA4ECV data (since the pixel size reduction TROPOMI uncertainties are ~ 8 % larger). The SCD uncertainty reported by the differential optical absorption spectroscopy (DOAS) fit is about 10 % larger than the statistical uncertainty, while for OMI-QA4ECV the DOAS uncertainty is some 20 % larger than its statistical uncertainty. Comparison of the SCDs themselves over the Pacific Ocean, averaged over 1 month, shows that TROPOMI is about 5 % higher than OMI-QA4ECV, which seems to be due mainly to the use of the so-called intensity offset correction in OMI-QA4ECV but not in TROPOMI: turning that correction off means about 5 % higher SCDs. The row-torow variation in the SCDs of TROPOMI, the "stripe amplitude", is 2.15 μmol m, while for OMI-QA4ECV it is a factor of ~ 2 (~ 5) larger in 2005 (2018); still, a so-called stripe correction of this non-physical across-track variation is useful for TROPOMI data. In short, TROPOMI shows a superior performance compared with OMI-QA4ECV and operates as anticipated from instrument specifications. The TROPOMI data used in this study cover 30 April 2018 up to 31 January 2020.
AB - The Tropospheric Monitoring Instrument (TROPOMI), aboard the Sentinel-5 Precursor (S5P) satellite, launched on 13 October 2017, provides measurements of atmospheric trace gases and of cloud and aerosol properties at an unprecedented spatial resolution of approximately 7 × 3:5 km2 (approx. 5:5 × 3:5 km2 as of 6 August 2019), achieving near-global coverage in 1 d. The retrieval of nitrogen dioxide (NO2) concentrations is a three-step procedure: slant column density (SCD) retrieval, separation of the SCD in its stratospheric and tropospheric components, and conversion of these into vertical column densities. This study focusses on the TROPOMI NO2 SCD retrieval: the retrieval method used, the stability of the SCDs and the SCD uncertainties, and a comparison with the Ozone Monitoring Instrument (OMI) NO2 SCDs. The statistical uncertainty, based on the spatial variability of the SCDs over a remote Pacific Ocean sector, is 8.63 μmol m-2 for all pixels (9.45 μmol m-2 for clear-sky pixels), which is very stable over time and some 30 % less than the long-term average over OMI-QA4ECV data (since the pixel size reduction TROPOMI uncertainties are ~ 8 % larger). The SCD uncertainty reported by the differential optical absorption spectroscopy (DOAS) fit is about 10 % larger than the statistical uncertainty, while for OMI-QA4ECV the DOAS uncertainty is some 20 % larger than its statistical uncertainty. Comparison of the SCDs themselves over the Pacific Ocean, averaged over 1 month, shows that TROPOMI is about 5 % higher than OMI-QA4ECV, which seems to be due mainly to the use of the so-called intensity offset correction in OMI-QA4ECV but not in TROPOMI: turning that correction off means about 5 % higher SCDs. The row-torow variation in the SCDs of TROPOMI, the "stripe amplitude", is 2.15 μmol m, while for OMI-QA4ECV it is a factor of ~ 2 (~ 5) larger in 2005 (2018); still, a so-called stripe correction of this non-physical across-track variation is useful for TROPOMI data. In short, TROPOMI shows a superior performance compared with OMI-QA4ECV and operates as anticipated from instrument specifications. The TROPOMI data used in this study cover 30 April 2018 up to 31 January 2020.
UR - http://www.scopus.com/inward/record.url?scp=85082778917&partnerID=8YFLogxK
U2 - 10.5194/amt-13-1315-2020
DO - 10.5194/amt-13-1315-2020
M3 - Article
AN - SCOPUS:85082778917
SN - 1867-1381
VL - 13
SP - 1315
EP - 1335
JO - Atmospheric Measurement Techniques
JF - Atmospheric Measurement Techniques
IS - 3
ER -