TY - GEN
T1 - Safe Policy Improvement with Baseline Bootstrapping in Factored Environments
AU - Simão, Thiago D.
AU - Spaan, Matthijs T.J.
N1 - Conference code: 33th
PY - 2019
Y1 - 2019
N2 - We present a novel safe reinforcement learning algorithm that exploits the factored dynamics of the environment to become less conservative. We focus on problem settings in which a policy is already running and the interaction with the environment is limited. In order to safely deploy an updated policy, it is necessary to provide a confidence level regarding its expected performance. However, algorithms for safe policy improvement might require a large number of past experiences to become confident enough to change the agent’s behavior. Factored reinforcement learning, on the other hand, is known to make good use of the data provided. It can achieve a better sample complexity by exploiting independence between features of the environment, but it lacks a confidence level. We study how to improve the sample efficiency of the safe policy improvement with baseline bootstrapping algorithm by exploiting the factored structure of the environment. Our main result is a theoretical bound that is linear in the number of parameters of the factored representation instead of the number of states. The empirical analysis shows that our method can improve the policy using a number of samples potentially one order of magnitude smaller than the flat algorithm.
AB - We present a novel safe reinforcement learning algorithm that exploits the factored dynamics of the environment to become less conservative. We focus on problem settings in which a policy is already running and the interaction with the environment is limited. In order to safely deploy an updated policy, it is necessary to provide a confidence level regarding its expected performance. However, algorithms for safe policy improvement might require a large number of past experiences to become confident enough to change the agent’s behavior. Factored reinforcement learning, on the other hand, is known to make good use of the data provided. It can achieve a better sample complexity by exploiting independence between features of the environment, but it lacks a confidence level. We study how to improve the sample efficiency of the safe policy improvement with baseline bootstrapping algorithm by exploiting the factored structure of the environment. Our main result is a theoretical bound that is linear in the number of parameters of the factored representation instead of the number of states. The empirical analysis shows that our method can improve the policy using a number of samples potentially one order of magnitude smaller than the flat algorithm.
UR - http://www.scopus.com/inward/record.url?scp=85074920659&partnerID=8YFLogxK
U2 - 10.1609/aaai.v33i01.33014967
DO - 10.1609/aaai.v33i01.33014967
M3 - Conference contribution
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 4967
EP - 4974
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - American Association for Artificial Intelligence (AAAI)
T2 - The 33th AAAI Conference on Artificial Intelligence
Y2 - 27 January 2019 through 1 February 2019
ER -