Self-Aligning and Self-Calibrating Capacitive Sensor System for Displacement Measurement in Inaccessible Industrial Environments

Oscar S. van de Ven, Johan G. Vogel, Sha Xia, Jo W. Spronck, Stoyan Nihtianov

Research output: Contribution to journalArticleScientificpeer-review

8 Citations (Scopus)
98 Downloads (Pure)

Abstract

High-precision positioning often requires high speed and high resolution displacement measurements in order to compensate for the small vibrations of critical components. The displacement sensor must be precise and stable over a long period of time to avoid expensive recalibration. This requires tight mounting tolerances, which are especially difficult to meet in inaccessible environments. The proposed sensor system is based on a capacitive sensor and consists of three subsystems: 1) a mechanical ``zoom-in'' system that performs self-alignment of the capacitive sensor electrode in order to reduce the mounting tolerances of the sensor; 2) a real-time capacitance-to-digital converter that employs an internal reference and electrical zoom-in technique to effectively reduce the dynamic range of the measured capacitance, thus improving the power efficiency; and 3) a self-calibration circuit that periodically calibrates the internal references to eliminate their drift. In previous publications, the three subsystems have been introduced. This paper shows how the different subsystems can be integrated to achieve optimal performance and presents new repeatability and stability measurement results. The overall system demonstrates a displacement measurement resolution of 65 pm (in terms of capacitance 65 aF) for a measurement time of 20 μs. Furthermore, the thermal drift of the sensor is within 6 ppm/K, owing to the self-calibration circuit. In measurement mode, the system consumes less than 16 mW.
Original languageEnglish
Pages (from-to)350-358
Number of pages9
JournalIEEE Transactions on Instrumentation and Measurement
Volume67
Issue number2
DOIs
Publication statusPublished - 2018

Bibliographical note

Accepted Author Manuscript

Keywords

  • Capacitive sensor
  • high-resolution capacitive-sensor interface
  • inaccessible environments
  • self-alignment
  • self-calibration
  • thermal actuator
  • thermal stability

Fingerprint

Dive into the research topics of 'Self-Aligning and Self-Calibrating Capacitive Sensor System for Displacement Measurement in Inaccessible Industrial Environments'. Together they form a unique fingerprint.

Cite this