Semiaromatic polyamides with enhanced charge carrier mobility

Bilal Özen, Nicolas Candau, Cansel Temiz, Ferdinand C. Grozema, Grégory Stoclet, Christopher J.G. Plummer, Holger Frauenrath*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

The control of local order in polymer semiconductors using non-covalent interactions may be used to engineer materials with interesting combinations of mechanical and optoelectronic properties. To investigate the possibility of preparing n-type polymer semiconductors in which hydrogen bonding plays an important role in structural order and stability, we have used solution-phase polycondensation to incorporate dicyanoperylene bisimide repeat units into an aliphatic polyamide chain backbone. The morphology and thermomechanical characteristics of the resulting polyamides, in which the aliphatic spacer length was varied systematically, were comparable with those of existing semiaromatic engineering polyamides. At the same time, the charge carrier mobility as determined by pulse-radiolysis time-resolved microwave conductivity measurements was found to be about 10-2 cm2 V-1 s-1, which is similar to that reported for low molecular weight perylene bisimides. Our results hence demonstrate that it is possible to use hydrogen bonding interactions as a means to introduce promising optoelectronic properties into high-performance engineering polymers.

Original languageEnglish
Pages (from-to)6914-6926
JournalPolymer Chemistry
Volume12
Issue number47
DOIs
Publication statusPublished - 2021

Fingerprint

Dive into the research topics of 'Semiaromatic polyamides with enhanced charge carrier mobility'. Together they form a unique fingerprint.

Cite this