SigVox – A 3D feature matching algorithm for automatic street object recognition in mobile laser scanning point clouds

Jinhu Wang*, Roderik Lindenbergh, Massimo Menenti

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

52 Citations (Scopus)

Abstract

Urban road environments contain a variety of objects including different types of lamp poles and traffic signs. Its monitoring is traditionally conducted by visual inspection, which is time consuming and expensive. Mobile laser scanning (MLS) systems sample the road environment efficiently by acquiring large and accurate point clouds. This work proposes a methodology for urban road object recognition from MLS point clouds. The proposed method uses, for the first time, shape descriptors of complete objects to match repetitive objects in large point clouds. To do so, a novel 3D multi-scale shape descriptor is introduced, that is embedded in a workflow that efficiently and automatically identifies different types of lamp poles and traffic signs. The workflow starts by tiling the raw point clouds along the scanning trajectory and by identifying non-ground points. After voxelization of the non-ground points, connected voxels are clustered to form candidate objects. For automatic recognition of lamp poles and street signs, a 3D significant eigenvector based shape descriptor using voxels (SigVox) is introduced. The 3D SigVox descriptor is constructed by first subdividing the points with an octree into several levels. Next, significant eigenvectors of the points in each voxel are determined by principal component analysis (PCA) and mapped onto the appropriate triangle of a sphere approximating icosahedron. This step is repeated for different scales. By determining the similarity of 3D SigVox descriptors between candidate point clusters and training objects, street furniture is automatically identified. The feasibility and quality of the proposed method is verified on two point clouds obtained in opposite direction of a stretch of road of 4 km. 6 types of lamp pole and 4 types of road sign were selected as objects of interest. Ground truth validation showed that the overall accuracy of the ∼170 automatically recognized objects is approximately 95%. The results demonstrate that the proposed method is able to recognize street furniture in a practical scenario. Remaining difficult cases are touching objects, like a lamp pole close to a tree.

Original languageEnglish
Pages (from-to)111-129
Number of pages19
JournalISPRS Journal of Photogrammetry and Remote Sensing
Volume128
DOIs
Publication statusPublished - 1 Jun 2017

Keywords

  • 3D feature descriptor
  • Mobile laser scanning
  • Multiple scale feature
  • Object recognition
  • Octree
  • Point cloud

Fingerprint

Dive into the research topics of 'SigVox – A 3D feature matching algorithm for automatic street object recognition in mobile laser scanning point clouds'. Together they form a unique fingerprint.

Cite this