Simulation of atomic layer deposition on nanoparticle agglomerates

Research output: Contribution to journalArticleScientificpeer-review

4 Citations (Scopus)
60 Downloads (Pure)

Abstract

Coated nanoparticles have many potential applications; production of large quantities is feasible by atomic layer deposition (ALD) on nanoparticles in a fluidized bed reactor. However, due to the cohesive interparticle forces, nanoparticles form large agglomerates, which influences the coating process. In order to study this influence, the authors have developed a novel computational modeling approach which incorporates (1) fully resolved agglomerates; (2) a self-limiting ALD half cycle reaction; and (3) gas diffusion in the rarefied regime modeled by direct simulation Monte Carlo. In the computational model, a preconstructed fractal agglomerate of up to 2048 spherical particles is exposed to precursor molecules that are introduced from the boundaries of the computational domain and react with the particle surfaces until these are fully saturated. With the computational model, the overall coating time for the nanoparticle agglomerate has been studied as a function of pressure, fractal dimension, and agglomerate size. Starting from the Gordon model for ALD coating within a cylindrical hole or trench [Gordon et al., Chem. Vap. Deposition 9, 73 (2003)], the authors also developed an analytic model for ALD coating of nanoparticles in fractal agglomerates. The predicted coating times from this analytic model agree well with the results from the computational model for Df = 2.5. The analytic model predicts that realistic agglomerates of O(10⁹) nanoparticles require coating times that are 3–4 orders of magnitude larger than for a single particle.
Original languageEnglish
Article number01B116
Pages (from-to)1-7
JournalJournal of Vacuum Science and Technology. Part A: International Journal Devoted to Vacuum, Surfaces, and Films
Volume35
Issue number1
DOIs
Publication statusPublished - Nov 2016

Keywords

  • Fractals
  • Atomic layer deposition
  • Nanoparticles
  • Self diffusion
  • Computational models

Fingerprint Dive into the research topics of 'Simulation of atomic layer deposition on nanoparticle agglomerates'. Together they form a unique fingerprint.

Cite this