SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome-autophagy network

Christy Hung, Eleanor Tuck, Victoria Stubbs, Sven J. van der Lee, Cora Aalfs, Resie van Spaendonk, Philip Scheltens, John Hardy, Henne Holstege, More Authors

Research output: Contribution to journalArticleScientificpeer-review

25 Citations (Scopus)
47 Downloads (Pure)

Abstract

Dysfunction of the endolysosomal-autophagy network is emerging as an important pathogenic process in Alzheimer's disease. Mutations in the sorting receptor-encoding gene SORL1 cause autosomal-dominant Alzheimer's disease, and SORL1 variants increase risk for late-onset AD. To understand the contribution of SORL1 mutations to AD pathogenesis, we analyze the effects of a SORL1 truncating mutation on SORL1 protein levels and endolysosome function in human neurons. We find that truncating mutation results in SORL1 haploinsufficiency and enlarged endosomes in human neurons. Analysis of isogenic SORL1 wild-type, heterozygous, and homozygous null neurons demonstrates that, whereas SORL1 haploinsufficiency results in endosome dysfunction, complete loss of SORL1 leads to additional defects in lysosome function and autophagy. Neuronal endolysosomal dysfunction caused by loss of SORL1 is relieved by extracellular antisense oligonucleotide-mediated reduction of APP protein, demonstrating that PSEN1, APP, and SORL1 act in a common pathway regulating the endolysosome system, which becomes dysfunctional in AD.

Original languageEnglish
Article number109259
Number of pages13
JournalCell Reports
Volume35
Issue number11
DOIs
Publication statusPublished - 2021

Keywords

  • Alzheimer's disease
  • amyloid precursor protein
  • autophagy
  • endosome
  • iPSC
  • lysosome
  • SORL1

Fingerprint

Dive into the research topics of 'SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome-autophagy network'. Together they form a unique fingerprint.

Cite this