TY - JOUR
T1 - Subjective modeling decisions can significantly impact the simulation of flood and drought events
AU - Melsen, Lieke A.
AU - Teuling, Adriaan J.
AU - Torfs, Paul J.J.F.
AU - Zappa, Massimiliano
AU - Mizukami, Naoki
AU - Mendoza, Pablo A.
AU - Clark, Martyn P.
AU - Uijlenhoet, Remko
PY - 2019
Y1 - 2019
N2 - It is generally acknowledged in the environmental sciences that the choice of a computational model impacts the research results. In this study of a flood and drought event in the Swiss Thur basin, we show that modeling decisions during the model configuration, beyond the model choice, also impact the model results. In our carefully designed experiment we investigated four modeling decisions in ten nested basins: the spatial resolution of the model, the spatial representation of the forcing data, the calibration period, and the performance metric. The flood characteristics were mainly affected by the performance metric, whereas the drought characteristics were mainly affected by the calibration period. The results could be related to the processes that triggered the particular events studied. The impact of the modeling decisions on the simulations did, however, vary among the investigated sub-basins. In spite of the limitations of this study, our findings have important implications for the understanding and quantification of uncertainty in any hydrological or even environmental model. Modeling decisions during model configuration introduce subjectivity from the modeler. Multiple working hypotheses during model configuration can provide insights on the impact of such subjective modeling decisions.
AB - It is generally acknowledged in the environmental sciences that the choice of a computational model impacts the research results. In this study of a flood and drought event in the Swiss Thur basin, we show that modeling decisions during the model configuration, beyond the model choice, also impact the model results. In our carefully designed experiment we investigated four modeling decisions in ten nested basins: the spatial resolution of the model, the spatial representation of the forcing data, the calibration period, and the performance metric. The flood characteristics were mainly affected by the performance metric, whereas the drought characteristics were mainly affected by the calibration period. The results could be related to the processes that triggered the particular events studied. The impact of the modeling decisions on the simulations did, however, vary among the investigated sub-basins. In spite of the limitations of this study, our findings have important implications for the understanding and quantification of uncertainty in any hydrological or even environmental model. Modeling decisions during model configuration introduce subjectivity from the modeler. Multiple working hypotheses during model configuration can provide insights on the impact of such subjective modeling decisions.
KW - Hydrological extremes
KW - Hydrological modeling
KW - Model configuration
KW - Modeling decisions
KW - Subjectivity
UR - http://www.scopus.com/inward/record.url?scp=85057520060&partnerID=8YFLogxK
U2 - 10.1016/j.jhydrol.2018.11.046
DO - 10.1016/j.jhydrol.2018.11.046
M3 - Article
AN - SCOPUS:85057520060
SN - 0022-1694
VL - 568
SP - 1093
EP - 1104
JO - Journal of Hydrology
JF - Journal of Hydrology
ER -