TY - JOUR
T1 - Subsurface hydrogen storage controlled by small-scale rock heterogeneities
AU - Jangda, Zaid
AU - Menke, Hannah
AU - Busch, Andreas
AU - Geiger, Sebastian
AU - Bultreys, Tom
AU - Singh, Kamaljit
PY - 2024
Y1 - 2024
N2 - Subsurface porous rocks hold significant hydrogen (H2) storage potential to support an H2-based energy future. Understanding H2 flow and trapping in subsurface rocks is crucial to reliably evaluate their storage efficiency. In this work, we perform cyclic H2 flow visualization experiments on a layered rock sample with varying pore and throat sizes. During drainage, H2 follows a path consisting of large pores and throats, through a low permeability rock layer, substantially reducing H2 storage capacity. Moreover, due to the rock heterogeneity and depending on the experimental flow strategy, imbibition unexpectedly results in higher H2 saturation compared to drainage. These results emphasize that small-scale rock heterogeneity, which is often unaccounted for in reservoir-scale models, plays a vital role in H2 displacement and trapping in subsurface porous media, with implications for efficient storage strategies.
AB - Subsurface porous rocks hold significant hydrogen (H2) storage potential to support an H2-based energy future. Understanding H2 flow and trapping in subsurface rocks is crucial to reliably evaluate their storage efficiency. In this work, we perform cyclic H2 flow visualization experiments on a layered rock sample with varying pore and throat sizes. During drainage, H2 follows a path consisting of large pores and throats, through a low permeability rock layer, substantially reducing H2 storage capacity. Moreover, due to the rock heterogeneity and depending on the experimental flow strategy, imbibition unexpectedly results in higher H2 saturation compared to drainage. These results emphasize that small-scale rock heterogeneity, which is often unaccounted for in reservoir-scale models, plays a vital role in H2 displacement and trapping in subsurface porous media, with implications for efficient storage strategies.
KW - Energy transition
KW - Hydrogen storage
KW - Pore-scale 3D visualization
KW - Porous media
UR - http://www.scopus.com/inward/record.url?scp=85186629146&partnerID=8YFLogxK
U2 - 10.1016/j.ijhydene.2024.02.233
DO - 10.1016/j.ijhydene.2024.02.233
M3 - Article
AN - SCOPUS:85186629146
SN - 0360-3199
VL - 60
SP - 1192
EP - 1202
JO - International Journal of Hydrogen Energy
JF - International Journal of Hydrogen Energy
ER -