Sulfonamides removal under different redox conditions and microbial response to sulfonamides stress during riverbank filtration: A laboratory column study

Ying Bai, Xiaohong Ruan, Feifei Wang, Antoine Garnier, Jan Peter van der Hoek

Research output: Contribution to journalArticleScientificpeer-review

10 Citations (Scopus)
6 Downloads (Pure)

Abstract

Riverbank filtration (RBF) as a barrier of pathogenic microorganisms and organic micropollutants recently has been proven capable of removing sulfonamides. However, the study about the effect of redox conditions on biodegradation of common and persistent sulfonamides in RBF is limited and the response of microbial communities to sulfonamides stress during RBF is unknown. In this study, two column set-ups (with residence time 5 days and 11 days respectively), simulating different redox conditions of riverbank filtration systems, were operated for seven months to investigate 1) the long-term effect of redox conditions on ng∙L−1 level sulfonamides (sulfapyridine, sulfadiazine, sulfamethoxazole, sulfamethazine, sulfaquinoxaline) removal, and 2) the microbial community evolution represented by the phylogenetic and metabolic function shift under non-lethal selective pressures of sulfonamides. The results showed that sulfonamides were more degradable under anoxic conditions than oxic and suboxic conditions. In the sulfonamides stressed community, the phylogenetic diversity increased slightly. Relative abundance of an intrinsic sulfonamides resistant bacteria Bacillus spp. increased, suggesting that sulfonamide resistance developed in specific bacteria under sulfonamides contamination pressure in RBF systems. At the same time, an activated transport function in the stressed microbial community was noticed. The predicted relative abundance of gene folP, which encodes dihydropteroate synthase, also increased significantly, indicating a detoxification mechanism and sulfonamides resistance potential under non-lethal selective pressures of sulfonamides in RBF systems.
Original languageEnglish
Pages (from-to)668-677
Number of pages10
JournalChemosphere
Volume220
DOIs
Publication statusPublished - 2019

Keywords

  • Riverbank filtration
  • Sulfonamides
  • Redox condition
  • Microbial community structure
  • Metagenome prediction

Fingerprint Dive into the research topics of 'Sulfonamides removal under different redox conditions and microbial response to sulfonamides stress during riverbank filtration: A laboratory column study'. Together they form a unique fingerprint.

Cite this