TY - JOUR
T1 - Superelastic response and damping behavior of additively manufactured Nitinol architectured materials
AU - Yan, Zhaorui
AU - Zhu, Jia Ning
AU - Borisov, Evgenii
AU - Riemslag, Ton
AU - Scott, Sean Paul
AU - Hermans, Marcel
AU - Jovanova, Jovana
AU - Popovich, Vera
PY - 2023
Y1 - 2023
N2 - In energy absorption applications, architectured metallic materials generally suffer from unrecoverable deformation as a result of local yield damage or inelastic buckling. Nitinol (NiTi) offers recoverable deformation and energy dissipation due to its unique superelasticity, which can change the way we design and additively manufacture energy-absorbing architectured materials. The interplay between microstructure, mesoscopic deformation, and macroscopic thermomechanical response of NiTi architectured materials is still not studied in depth. In this work, NiTi architectured materials featuring anisotropic superelastic response, recoverable energy absorption and damping were successfully modeled and manufactured using laser powder bed fusion (L-PBF). Extensive numerical models demonstrated that NiTi architectured materials exhibit temperature-dependent superelasticity and effective transformation stress which can be controlled by the relative density and cell architecture. An effective transformation surface was developed based on the extended Hill's model, illustrating anisotropy is temperature-independent. Stable cyclic behavior with 2.8 % of reversible strain and damping behavior was successfully achieved in cyclic compressive tests without yielding damage or plastic buckling, which further illustrates that the progressive martensitic transformation is the main deformation and energy dissipation mechanism. A comparative study between designed herein body centered cubic (BCC) and octet structures showed that local microstructures significantly affect the deformation modes. The integrated computational and experimental study enables tailoring the superelasticity by combining structural design and microstructural control. Architectured materials designed in this study are potentially applicable as reusable impact absorbers in aerospace, automotive, maritime and vibration-proof structures.
AB - In energy absorption applications, architectured metallic materials generally suffer from unrecoverable deformation as a result of local yield damage or inelastic buckling. Nitinol (NiTi) offers recoverable deformation and energy dissipation due to its unique superelasticity, which can change the way we design and additively manufacture energy-absorbing architectured materials. The interplay between microstructure, mesoscopic deformation, and macroscopic thermomechanical response of NiTi architectured materials is still not studied in depth. In this work, NiTi architectured materials featuring anisotropic superelastic response, recoverable energy absorption and damping were successfully modeled and manufactured using laser powder bed fusion (L-PBF). Extensive numerical models demonstrated that NiTi architectured materials exhibit temperature-dependent superelasticity and effective transformation stress which can be controlled by the relative density and cell architecture. An effective transformation surface was developed based on the extended Hill's model, illustrating anisotropy is temperature-independent. Stable cyclic behavior with 2.8 % of reversible strain and damping behavior was successfully achieved in cyclic compressive tests without yielding damage or plastic buckling, which further illustrates that the progressive martensitic transformation is the main deformation and energy dissipation mechanism. A comparative study between designed herein body centered cubic (BCC) and octet structures showed that local microstructures significantly affect the deformation modes. The integrated computational and experimental study enables tailoring the superelasticity by combining structural design and microstructural control. Architectured materials designed in this study are potentially applicable as reusable impact absorbers in aerospace, automotive, maritime and vibration-proof structures.
KW - Additive manufacturing
KW - Architectured material
KW - Energy absorption
KW - NiTi
KW - Tailored damping
UR - http://www.scopus.com/inward/record.url?scp=85151407776&partnerID=8YFLogxK
U2 - 10.1016/j.addma.2023.103505
DO - 10.1016/j.addma.2023.103505
M3 - Article
AN - SCOPUS:85151407776
SN - 2214-8604
VL - 68
JO - Additive Manufacturing
JF - Additive Manufacturing
M1 - 103505
ER -