TY - JOUR
T1 - Testimonial injustice in medical machine learning
AU - Pozzi, Giorgia
PY - 2023
Y1 - 2023
N2 - Machine learning (ML) systems play an increasingly relevant role in medicine and healthcare. As their applications move ever closer to patient care and cure in clinical settings, ethical concerns about the responsibility of their use come to the fore. I analyse an aspect of responsible ML use that bears not only an ethical but also a significant epistemic dimension. I focus on ML systems' role in mediating patient-physician relations. I thereby consider how ML systems may silence patients' voices and relativise the credibility of their opinions, which undermines their overall credibility status without valid moral and epistemic justification. More specifically, I argue that withholding credibility due to how ML systems operate can be particularly harmful to patients and, apart from adverse outcomes, qualifies as a form of testimonial injustice. I make my case for testimonial injustice in medical ML by considering ML systems currently used in the USA to predict patients' risk of misusing opioids (automated Prediction Drug Monitoring Programmes, PDMPs for short). I argue that the locus of testimonial injustice in ML-mediated medical encounters is found in the fact that these systems are treated as markers of trustworthiness on which patients' credibility is assessed. I further show how ML-based PDMPs exacerbate and further propagate social inequalities at the expense of vulnerable social groups.
AB - Machine learning (ML) systems play an increasingly relevant role in medicine and healthcare. As their applications move ever closer to patient care and cure in clinical settings, ethical concerns about the responsibility of their use come to the fore. I analyse an aspect of responsible ML use that bears not only an ethical but also a significant epistemic dimension. I focus on ML systems' role in mediating patient-physician relations. I thereby consider how ML systems may silence patients' voices and relativise the credibility of their opinions, which undermines their overall credibility status without valid moral and epistemic justification. More specifically, I argue that withholding credibility due to how ML systems operate can be particularly harmful to patients and, apart from adverse outcomes, qualifies as a form of testimonial injustice. I make my case for testimonial injustice in medical ML by considering ML systems currently used in the USA to predict patients' risk of misusing opioids (automated Prediction Drug Monitoring Programmes, PDMPs for short). I argue that the locus of testimonial injustice in ML-mediated medical encounters is found in the fact that these systems are treated as markers of trustworthiness on which patients' credibility is assessed. I further show how ML-based PDMPs exacerbate and further propagate social inequalities at the expense of vulnerable social groups.
KW - Ethics- Medical
UR - http://www.scopus.com/inward/record.url?scp=85146770155&partnerID=8YFLogxK
U2 - 10.1136/jme-2022-108630
DO - 10.1136/jme-2022-108630
M3 - Article
C2 - 36635066
AN - SCOPUS:85146770155
SN - 0306-6800
VL - 49
SP - 536
EP - 540
JO - Journal of medical ethics
JF - Journal of medical ethics
IS - 8
ER -