The Induced Dimension Reduction Method Applied to Convection-Diffusion-Reaction Problems

Reinaldo Astudillo Rengifo, Martin van Gijzen

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

1 Citation (Scopus)

Abstract

Discretization of (linearized) convection-diffusion-reaction problems yields a large and sparse non symmetric linear system of equations, Ax=b.
In this work, we compare the computational behavior of the Induced Dimension Reduction method (IDR(s)) (Sonneveld and van Gijzen, SIAM J Sci Comput 31(2):1035–1062, 2008), with other short-recurrences Krylov methods, specifically the Bi-Conjugate Gradient Method (Bi-CG) (Fletcher, Conjugate gradient methods for indefinite systems. In: Proceedings of the Dundee conference on numerical analysis, pp 73–89, 1976), restarted Generalized Minimal Residual (GMRES(m)) (Saad and Schultz, SIAM J Sci Stat Comput 7:856–869, 1986), and Bi-Conjugate Gradient Stabilized method (Bi-CGSTAB) (van der Vorst, SIAM J Sci Stat Comput 13(2):631–644, 1992).
Original languageEnglish
Title of host publicationNumerical Mathematics and Advanced Applications ENUMATH 2015
EditorsB. Karasözen, M. Manguoğlu, M. Tezer-Sezgin, S. Göktepe, Ö. Uğur
PublisherSpringer
Pages295-303
Number of pages9
ISBN (Electronic)978-3-319-39929-4
DOIs
Publication statusPublished - 2016
EventENUMATH 2015: The European Conference on Numerical Mathematics and Advanced Applications - Ankara, Turkey
Duration: 14 Sept 201518 Sept 2015

Publication series

NameLecture Notes in Computational Science and Engineering
Volume112

Conference

ConferenceENUMATH 2015
Country/TerritoryTurkey
CityAnkara
Period14/09/1518/09/15

Fingerprint

Dive into the research topics of 'The Induced Dimension Reduction Method Applied to Convection-Diffusion-Reaction Problems'. Together they form a unique fingerprint.

Cite this