The native and metastable defects and their joint density of states in hydrogenated amorphous silicon obtained from the improved dual beam photoconductivity method

Mehmet Güneş*, Jimmy Melskens, Arno H.M. Smets

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

5 Downloads (Pure)

Abstract

In this study, undoped hydrogenated amorphous silicon (a-Si:H) thin films deposited under moderate dilution ratios of silane by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) have been investigated using steady-state photoconductivity and improved dual beam photoconductivity (DBP) methods to identify changes in multiple gap states in annealed and light-soaked states. Four different gap states were identified in annealed state named as A, B, C, and X states. The peak energy positions of these Gaussian distributions are consistent with those recently identified by Fourier transform photocurrent spectroscopy (FTPS). After in situ light soaking, their density increases with different rates as peak energy positions and half-widths remain unaffected. The electron-occupied A and B states located below the dark Fermi level and their density and ratios in the annealed and light-soaked states correlate well with those defects detected by time-domain pulsed electron paramagnetic resonance (EPR) experiments. The A, B, and X states located closer to the middle of the bandgap anneal out at room temperature in dark and define the "fast"states. However, the C states show no sign of room temperature annealing such that they must define the "slow"states in undoped a-Si:H. The results found in this study indicate that the anisotropic disordered network is a more appropriate model than previously proposed defect models based on the continuous random network to define the nanostructure of undoped a-Si:H, where multiple defects, D0 and non-D0 defects, can be identified by using the improved DBP method.

Original languageEnglish
Article number125702
Number of pages18
JournalJournal of Applied Physics
Volume133
Issue number12
DOIs
Publication statusPublished - 2023

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'The native and metastable defects and their joint density of states in hydrogenated amorphous silicon obtained from the improved dual beam photoconductivity method'. Together they form a unique fingerprint.

Cite this