Three dimensional internal and near-wall flow features of a structured porous coated cylinder

Elias J. G. Arcondoulis*, Yu Liu, Yannian Yang, D. Ragni, A. Rubio Carpio, F. Avallone

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

1 Citation (Scopus)
88 Downloads (Pure)

Abstract

The application of a porous coating to a cylinder can significantly reduce the vortex shedding tone when placed in a uniform flow. The mechanism of how this porous media attenuates vortex shedding has been studied more in recent years yet it is still not fully understood. Typical porous materials within a certain range of porosity and airflow resistivity, such as metal foam and porous polyurethane, have been studied extensively; however, the fundamental flow mechanisms responsible for vortex shedding attenuation are very difficult to determine. For example, it is nearly impossible to visualize the internal flow field of porous media with a randomized open-cell internal structure. A Structured Porous Coated Cylinder (SPCC) was designed in recent years to alleviate this internal flow field problem, as the SPCC has clear line of sight along the span and radial direction. SPCC variations have been previously studied and shown to reduce the vortex shedding tone of a bare cylinder in a very similar manner as a randomized porous coated cylinder. In this paper, we present a Tomographic Particle Image Velocimetry study of an SPCC tested in a water tunnel, revealing the previously unseen internal and near-wall flow fields of an SPCC. The flow is visualized in the porous layers, revealing complex interaction between the freestream flow field and the porous structure. Using cross-correlation methods within the flow field, we reveal the entrainment of the flow within the porous layers. Furthermore, implementation of Proper Orthogonal Decomposition shows that vortex shedding occurs within the porous layers.
Original languageEnglish
Title of host publication28th AIAA/CEAS Aeroacoustics 2022 Conference
Number of pages16
ISBN (Electronic)978-1-62410-664-4
DOIs
Publication statusPublished - 2022
Event28th AIAA/CEAS Aeroacoustics 2022 Conference - Southampton, United Kingdom
Duration: 14 Jun 202217 Jun 2022
Conference number: 28

Publication series

Name28th AIAA/CEAS Aeroacoustics Conference, 2022

Conference

Conference28th AIAA/CEAS Aeroacoustics 2022 Conference
Country/TerritoryUnited Kingdom
CitySouthampton
Period14/06/2217/06/22

Fingerprint

Dive into the research topics of 'Three dimensional internal and near-wall flow features of a structured porous coated cylinder'. Together they form a unique fingerprint.

Cite this