Three-phase flow modelling using pore-scale capillary pressures and relative permeabilities for mixed-wet media at the continuum-scale

Randi Holm*, Marinus I.J. van Dijke, Sebastian Geiger

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

22 Citations (Scopus)

Abstract

When regions of three-phase flow arise in an oil reservoir, each of the flow parameters, i. e. capillary pressures and relative permeabilities, are generally functions of two phase saturations and depend on the wettability state. The idea of this work is to generate consistent pore-scale based three-phase capillary pressures and relative permeabilities. These are then used as input to a 1-D continuum core- or reservoir-scale simulator. The pore-scale model comprises a bundle of cylindrical capillary tubes, which has a distribution of radii and a prescribed wettability state. Contrary to a full pore-network model, the bundle model allows us to obtain the flow functions for the saturations produced at the continuum-scale iteratively. Hence, the complex dependencies of relative permeability and capillary pressure on saturation are directly taken care of. Simulations of gas injection are performed for different initial water and oil saturations, with and without capillary pressures, to demonstrate how the wettability state, incorporated in the pore-scale based flow functions, affects the continuum-scale displacement patterns and saturation profiles. In general, wettability has a major impact on the displacements, even when capillary pressure is suppressed. Moreover, displacement paths produced at the pore-scale and at the continuum-scale models are similar, but they never completely coincide.

Original languageEnglish
Pages (from-to)423-442
Number of pages20
JournalTransport in Porous Media
Volume81
Issue number3
DOIs
Publication statusPublished - Jan 2010
Externally publishedYes

Keywords

  • Capillary bundle model
  • Consistent flow functions
  • Pore- and continuum-scale modelling
  • Three-phase flow
  • Wettability

Fingerprint

Dive into the research topics of 'Three-phase flow modelling using pore-scale capillary pressures and relative permeabilities for mixed-wet media at the continuum-scale'. Together they form a unique fingerprint.

Cite this