Unaccounted CO2 leaks downstream of a large tropical hydroelectric reservoir

Elisa Calamita, Annunziato Siviglia, Gretchen M. Gettel, Mario J. Franca, R. Scott Winton, Cristian R. Teodoru, Martin Schmid, Bernhard Wehrli

Research output: Contribution to journalArticleScientificpeer-review

2 Downloads (Pure)

Abstract

Recent studies show that tropical hydroelectric reservoirs may be responsible for substantial greenhouse gas emissions to the atmosphere, yet emissions from the surface of released water downstream of the dam are poorly characterized if not neglected entirely from most assessments. We found that carbon dioxide (CO2) emission downstream of Kariba Dam (southern Africa) varied widely over different timescales and that accounting for downstream emissions and their fluctuations is critically important to the reservoir carbon budget. Seasonal variation was driven by reservoir stratification and the accumulation of CO2 in hypolimnetic waters, while subdaily variation was driven by hydropeaking events caused by dam operation in response to daily electricity demand. This “carbopeaking” resulted in hourly variations of CO2 emission up to 200% during stratification. Failing to account for seasonal or subdaily variations in downstream carbon emissions could lead to errors of up to 90% when estimating the reservoir’s annual emissions. These results demonstrate the critical need to include both limnological seasonality and dam operation at subdaily time steps in the assessment of carbon budgeting of reservoirs and carbon cycling along the aquatic continuum.

Original languageEnglish
Article numbere2026004118
Pages (from-to)1-8
Number of pages8
JournalProceedings of the National Academy of Sciences of the United States of America
Volume118
Issue number25
DOIs
Publication statusPublished - 2021

Keywords

  • Carbon emission
  • hydropower dams
  • river damming
  • reservoir carbon budget

Fingerprint

Dive into the research topics of 'Unaccounted CO<sub>2</sub> leaks downstream of a large tropical hydroelectric reservoir'. Together they form a unique fingerprint.

Cite this