Understanding the cation-dependent surfactant adsorption on clay minerals in oil recovery

Zilong Liu*, Murali K. Ghatkesar, Ernst J.R. Sudhölter, Binder Singh, Naveen Kumar

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

31 Citations (Scopus)
62 Downloads (Pure)


Surfactants have the ability to mobilize residual oil trapped in pore spaces of matrix rocks by lowering the oil-water interfacial tension, resulting in a higher oil recovery. However, the loss of surfactants by adsorption onto the rock surface has become a major concern that reduces the efficiency of the surfactant flooding process. In this study, the adsorption behavior of an anionic surfactant to a clay mineral surface was investigated by quartz crystal microbalance with dissipation monitoring upon variations with different cation conditions. Through recording the change of frequency and dissipation of clay-modified sensors, it allows us to do a real-time quantitative analysis of the surfactant adsorption with nanogram sensitivity. The results revealed that the surfactant adsorption increased in a Ca2+-containing solution with increasing pH from 6 to 11, whereas from a Na+-containing solution, more adsorption occurred at acidic conditions. The adsorbed amount went through a maximum (∼200 mM) as a function of the Ca2+ concentration, and the Voigt model suggested that multilayer adsorption of surfactants could be as many as 4-6 monolayers. Using mixed cation (Ca2+ and Na+) solutions, the amount of adsorbed surfactant decreased linearly with decreasing fraction of CaCl2, but Na+ competed for about ∼30% adsorption sites. The importance of the presence of CaCl2 for the surfactant adsorption was stressed in high-salinity and low-salinity solutions in the presence and absence of Ca2+. Furthermore, increasing the temperature from 23 to 65 °C shows first a small increase of surfactant adsorption followed by a reduction of about 20%. The obtained results contribute to a better understanding of surfactant adsorption on clay surfaces and a guide to optimal flooding conditions with reduced surfactant loss.

Original languageEnglish
Pages (from-to)12319-12329
JournalEnergy and Fuels
Issue number12
Publication statusPublished - 2019

Bibliographical note

Green Open Access added to TU Delft Institutional Repository'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.


Dive into the research topics of 'Understanding the cation-dependent surfactant adsorption on clay minerals in oil recovery'. Together they form a unique fingerprint.

Cite this