Abstract
Floating wind energy has attracted substantial interest since it enables the deployment of renewable wind energy in deeper waters. However, floating wind turbines are subjected to disturbances, predominantly from turbulence in the wind and waves hitting the platform. Wave disturbances cause undesired oscillations in speed and increase structural loading. This paper focuses on mitigating these disturbance effects with feedforward control using knowledge of the incoming wavefield. The control problem is formulated in an H∞ optimization framework designing two wave feedforward controllers: one to reduce rotor speed oscillations, and the other one to minimize the platform pitch motion. Mid-fidelity time-domain simulations demonstrate the improved performance of the proposed control algorithm regarding wave disturbance mitigation at the cost of higher actuator duty.
Original language | English |
---|---|
Title of host publication | Proceedings of the 2023 IEEE Conference on Control Technology and Applications, CCTA 2023 |
Publisher | IEEE |
Pages | 593-598 |
ISBN (Electronic) | 979-8-3503-3544-6 |
DOIs | |
Publication status | Published - 2023 |
Event | 2023 IEEE Conference on Control Technology and Applications, CCTA 2023 - Bridgetown, Barbados Duration: 16 Aug 2023 → 18 Aug 2023 |
Conference
Conference | 2023 IEEE Conference on Control Technology and Applications, CCTA 2023 |
---|---|
Country/Territory | Barbados |
City | Bridgetown |
Period | 16/08/23 → 18/08/23 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.