Wave Feedforward Control for Large Floating Wind Turbines

Amr Hegazy*, Peter Naaijen, Jan Willem Van Wingerden

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

3 Downloads (Pure)

Abstract

Floating wind energy has attracted substantial interest since it enables the deployment of renewable wind energy in deeper waters. However, floating wind turbines are subjected to disturbances, predominantly from turbulence in the wind and waves hitting the platform. Wave disturbances cause undesired oscillations in speed and increase structural loading. This paper focuses on mitigating these disturbance effects with feedforward control using knowledge of the incoming wavefield. The control problem is formulated in an H∞ optimization framework designing two wave feedforward controllers: one to reduce rotor speed oscillations, and the other one to minimize the platform pitch motion. Mid-fidelity time-domain simulations demonstrate the improved performance of the proposed control algorithm regarding wave disturbance mitigation at the cost of higher actuator duty.

Original languageEnglish
Title of host publicationProceedings of the 2023 IEEE Conference on Control Technology and Applications, CCTA 2023
PublisherIEEE
Pages593-598
ISBN (Electronic)979-8-3503-3544-6
DOIs
Publication statusPublished - 2023
Event2023 IEEE Conference on Control Technology and Applications, CCTA 2023 - Bridgetown, Barbados
Duration: 16 Aug 202318 Aug 2023

Conference

Conference2023 IEEE Conference on Control Technology and Applications, CCTA 2023
Country/TerritoryBarbados
CityBridgetown
Period16/08/2318/08/23

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Wave Feedforward Control for Large Floating Wind Turbines'. Together they form a unique fingerprint.

Cite this