A generic high-throughput microstructure classification and quantification method for regular SEM images of complex steel microstructures combining EBSD labeling and deep learning

Chunguang Shen, Chenchong Wang*, Minghao Huang, Ning Xu, Sybrand van der Zwaag, Wei Xu

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

26 Citations (Scopus)
68 Downloads (Pure)

Abstract

We present an electron backscattered diffraction (EBSD)-trained deep learning (DL) method integrating traditional material characterization informatics and artificial intelligence for a more accurate classification and quantification of complex microstructures using only regular scanning electron microscope (SEM) images. In this method, EBSD analysis is applied to produce accurate ground truth data for guiding the DL model training. An U-Net architecture is used to establish the correlation between SEM input images and EBSD ground truth data using only small experimental datasets. The proposed method is successfully applied to two engineering steels with complex microstructures, i.e., a dual-phase (DP) steel and a quenching and partitioning (Q&P) steel, to segment different phases and quantify phase content and grain size. Alternatively, once properly trained the method can also produce quasi-EBSD maps by inputting regular SEM images. The good generality of the trained models is demonstrated by using DP and Q&P steels not associated with the model training. Finally, the method is applied to SEM images with various states, i.e., different imaging modes, image qualities and magnifications, demonstrating its good robustness and strong application ability. Furthermore, the visualization of feature maps during the segmenting process is utilised to explain the mechanism of this method's good performance.

Original languageEnglish
Pages (from-to)191-204
Number of pages14
JournalJournal of Materials Science and Technology
Volume93
DOIs
Publication statusPublished - 2021

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Deep learning
  • Electron backscatter diffraction
  • Microstructure quantification
  • Small sample problem

Fingerprint

Dive into the research topics of 'A generic high-throughput microstructure classification and quantification method for regular SEM images of complex steel microstructures combining EBSD labeling and deep learning'. Together they form a unique fingerprint.

Cite this