A Wavelet-Based Approach to FRF Identification From Incomplete Data

Nic Dirkx*, Koen Tiels, Tom Oomen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

6 Downloads (Pure)


Frequency response function (FRF) estimation from measured data is an essential step in the design, control, and analysis of complex dynamical systems, including thermal and motion systems. Especially for systems that require long measurement time, missing samples in the data record, e.g., due to measurement interruptions, often occur. The aim of this article is to achieve accurate identification of nonparametric FRF models of periodically excited systems from noisy output measurements with missing samples. An identification framework is established that exploits a wavelet-based transform to separate the effect of the missing samples in the time domain from the system characteristics in tre frequency domain. The framework encompasses both a time-invariant and a time-varying wavelet-based estimator, which provides different mechanisms to address the missing samples. Experimental results from a thermodynamical system confirm that the estimators enable accurate identification.

Original languageEnglish
Article number6501715
Number of pages15
JournalIEEE Transactions on Instrumentation and Measurement
Publication statusPublished - 2023

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.


  • Frequency response
  • linear systems
  • missing data
  • system identification
  • wavelet transforms

Cite this