Abstract
We present a novel controller for fixed-wing UAVs that enables autonomous soaring in an orographic wind field, extending flight endurance. Our method identifies soaring regions and addresses position control challenges by introducing a target gradient line (TGL) on which the UAV achieves an equilibrium soaring position, where sink rate and updraft are balanced. Experimental testing validates the controller's effectiveness in maintaining autonomous soaring flight without using any thrust in a non-static wind field. We also demonstrate a single degree of control freedom in a soaring position through manipulation of the TGL.
Original language | English |
---|---|
Title of host publication | Proceedings - ICRA 2023 |
Subtitle of host publication | IEEE International Conference on Robotics and Automation |
Publisher | IEEE |
Pages | 5338-5344 |
Number of pages | 7 |
ISBN (Electronic) | 9798350323658 |
DOIs | |
Publication status | Published - 2023 |
Event | 2023 IEEE International Conference on Robotics and Automation, ICRA 2023 - London, United Kingdom Duration: 29 May 2023 → 2 Jun 2023 |
Publication series
Name | Proceedings - IEEE International Conference on Robotics and Automation |
---|---|
Volume | 2023-May |
ISSN (Print) | 1050-4729 |
Conference
Conference | 2023 IEEE International Conference on Robotics and Automation, ICRA 2023 |
---|---|
Country/Territory | United Kingdom |
City | London |
Period | 29/05/23 → 2/06/23 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- au-tonomous control
- orographic soaring
- UAV
- wind hovering