DisQ: Disentangling Quantitative MRI Mapping of the Heart

Changchun Yang, Yidong Zhao, Lu Huang, Liming Xia, Qian Tao*

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

1 Citation (Scopus)
26 Downloads (Pure)

Abstract

Quantitative MRI (qMRI) of the heart has become an important clinical tool for examining myocardial tissue properties. Because heart is a moving object, it is usually imaged with electrocardiogram and respiratory gating during acquisition, to “freeze” its motion. In reality, gating is more-often-than-not imperfect given the heart rate variability and nonideal breath-hold. qMRI of the heart, consequently, is characteristic of varying image contrast as well as residual motion, the latter compromising the quality of quantitative mapping. Motion correction is an important step prior to parametric mapping, however, a long-standing difficulty for registering the dynamic sequence is that the contrast across frames varies wildly: depending on the acquisition scheme some frames can have extremely poor contrast, which fails both traditional optimization-based and modern learning-based registration methods. In this work, we propose a novel framework named DisQ, which Disentangles Quantitative mapping sequences into the latent space of contrast and anatomy, fully unsupervised. The disentangled latent spaces serve for the purpose of generating a series of images with identical contrast, which enables easy and accurate registration of all frames. We applied our DisQ method to the modified Look-Locker inversion recovery (MOLLI) sequence, and demonstrated improved performance of T1 mapping. In addition, we showed the possibility of generating a dynamic series of baseline images with exactly the same shape, strictly registered and perfectly “frozen". Our proposed DisQ methodology readily extends to other types of cardiac qMRI such as T2 mapping and perfusion.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
EditorsLinwei Wang, Qi Dou, P. Thomas Fletcher, Stefanie Speidel, Shuo Li
PublisherSpringer
Pages291-300
Number of pages10
ISBN (Electronic)978-3-031-16446-0
ISBN (Print)978-3-031-16445-3
DOIs
Publication statusPublished - 2022
Event25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duration: 18 Sept 202222 Sept 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13436 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Country/TerritorySingapore
CitySingapore
Period18/09/2222/09/22

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Motion correction
  • Quantitative magnetic resonance imaging
  • T mapping
  • Unsupervised disentangled representation

Fingerprint

Dive into the research topics of 'DisQ: Disentangling Quantitative MRI Mapping of the Heart'. Together they form a unique fingerprint.

Cite this