Effect of struts and central tower on aerodynamics and aeroacoustics of vertical axis wind turbines using mid-fidelity and high-fidelity methods

Shubham Shubham, F. Avallone, L. Brandetti, Nigel Wright, Anton Ianakiev

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

94 Downloads (Pure)

Abstract

This study investigates the impact of struts and a central tower on the aerodynamics and aeroacoustics of Darrieus Vertical Axis Wind Turbines (VAWTs) at chord-based Reynolds numbers of 8.12e4. A 2-bladed H-Darrieus VAWT is used, featuring a 1.5m diameter, a solidity of 0.1 and a blade cross-section of symmetrical NACA 0021. The turbine design is kept simple and straight-bladed which is essential for isolating and analyzing the specific effects of struts and a tower. The high-fidelity Lattice Boltzmann Method (LBM) in PowerFLOW 6-2020 and the mid-fidelity Lifting Line Free Vortex Wake (LLFVW) method in QBlade 2.0 are employed, with the mid-fidelity method providing a faster analytical tool for insights into the turbine performance. Firstly, both the LLFVW (mid-fidelity) and LBM (high-fidelity) methods effectively capture the general trends observed in VAWT power performance. However, the former predicts mean thrust values that are approximately 10% higher, and mean torque values that are approximately 19% higher, in comparison to the latter. Subsequently, the former predicts lower streamwise wake velocities relative to those predicted by the latter. These differences increase in configurations that include struts and a tower (to 30% - 31%). Secondly, the presence of struts and a tower leads to a reduction in both mean power (by 15% to 55%) and thrust (by 3% to 3.6%), with a further small decrease observed when doubling the tower diameter (power and thrust both by 0.5% to 3%). The struts predominantly affect the spanwise distribution of blade loading, while the tower impacts the azimuthal variation of blade loading. Additionally, the addition of struts and a tower reduces low-frequency noise (50-200 Hz) while increasing high-frequency noise (> 300 Hz). The observed decrease in mean blade loading results in reduced low-frequency noise, while the increase in high-frequency noise is ascribed to the increased intensity of BWI/BVI leading to higher unsteady loading fluctuations on blades.
Original languageEnglish
Title of host publicationProceedings of the AIAA SCITECH 2024 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc. (AIAA)
Number of pages25
ISBN (Electronic)978-1-62410-711-5
DOIs
Publication statusPublished - 2024
EventAIAA SCITECH 2024 Forum - Orlando, United States
Duration: 8 Jan 202412 Jan 2024

Conference

ConferenceAIAA SCITECH 2024 Forum
Country/TerritoryUnited States
CityOrlando
Period8/01/2412/01/24

Fingerprint

Dive into the research topics of 'Effect of struts and central tower on aerodynamics and aeroacoustics of vertical axis wind turbines using mid-fidelity and high-fidelity methods'. Together they form a unique fingerprint.

Cite this