Abstract
Wind, as a sustainable and affordable energy source, represents a strong alternative to traditional energy sources. However, wind power is only one of the options, together with other renewable energy sources. Consequently, the core concerns for wind turbine manufacturers and operators are to increase its reliability and decrease costs, therefore enhancing commercial competitiveness. Among typical failure modes of wind turbines, fatigue is a common and critical source. Given the significance of fatigue reliability in wind turbine structural integrity, reliable probabilistic fatigue theories are necessary for design scheme optimization. By reducing the expenses on manufacturing, operation, and maintenance in reliability- and cost-optimal ways, the cost of energy can be significantly reduced. This study systematically reviews the state-of-the-art technology for fatigue reliability of wind turbines, and elaborates on the evolution of methodology in wind load uncertainty modelling. In addition, fatigue reliability assessment techniques on four typical components are summarized. Finally, discussions and conclusions are presented, intending to provide direct insights into future theoretical development and methodological innovation in this field.
Original language | English |
---|---|
Pages (from-to) | 724-742 |
Number of pages | 19 |
Journal | Renewable Energy |
Volume | 200 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Keywords
- Fatigue
- Load variation
- Reliability analysis
- Uncertainty
- Wind turbine