Abstract
In cytokinesis of animal cells, the cell is symmetrically divided into two. Since the cell's volume is conserved, the projected area has to increase to allow for the change of shape. Here we aim to predict how membrane gain and loss adapt during cytokinesis. We work with a kinetic model in which membrane turnover depends on membrane tension and cell shape. We apply this model to a series of calculated vesicle shapes as a proxy for the shape of dividing cells. We find that the ratio of kinetic turnover parameters changes nonmonotonically with cell shape, determined by the dependence of exocytosis and endocytosis on membrane curvature. Our results imply that controlling membrane turnover will be crucial for the successful division of artificial cells.
Original language | English |
---|---|
Article number | 024401 |
Number of pages | 15 |
Journal | Physical Review E |
Volume | 106 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2022 |