Abstract
Dynamic contrast enhanced (DCE) MRI acquires a series of images following the administration of a contrast agent, and plays an important clinical role in diagnosing various diseases. DCE MRI typically necessitates rapid imaging to provide sufficient spatio-temporal resolution and coverage. Conventional MRI acceleration techniques exhibit limited image quality at such high acceleration rates. Recently, deep learning (DL) methods have gained interest for improving highly-accelerated MRI. However, DCE MRI series show substantial variations in SNR and contrast across images. This hinders the quality and generalizability of DL methods, when applied across time frames. In this study, we propose signal intensity informed multi-coil MRI encoding operator for improved DL reconstruction of DCE MRI. The output of the corresponding inverse problem for this forward operator leads to more uniform contrast across time frames, since the proposed operator captures signal intensity variations across time frames while not altering the coil sensitivities. Our results in perfusion cardiac MRI show that high-quality images are reconstructed at very high acceleration rates, with substantial improvement over existing methods.
Original language | English |
---|---|
Title of host publication | 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) |
Place of Publication | Piscataway, NJ, USA |
Pages | 1472-1476 |
Volume | 2022 |
ISBN (Electronic) | 978-1-7281-2782-8 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.