Abstract
Electric vehicle (EV) users who aim to become flexibility providers face a tradeoff between staying in control of charging and minimizing their electricity costs. The common practice is to charge immediately after plugging in and use more electricity than necessary. Changing this can increase the EV’s flexibility potential and reduce electricity costs. Our extended electricity cost optimization model systematically examines how different changes to this practice influence electricity costs. Based on the Prospect Theory and substantiated by empirical data, it captures EV users’ tradeoff between relinquishing control and reducing charging costs. Lowering the need to control charging results in disproportionally large savings in electricity costs. This finding incentivizes EV-users to relinquish even more control of charging. We analyzed changes to two charging settings that express the need for control. We found that changing only one setting offsets the other and reduces its positive effect on cost savings. Behavioral aspects, such as rebound effects and inertia that are widely documented in the literature, support this finding and underline the fit of our model extension to capture different charging behaviors. Our findings suggest that service providers should convince EV-users to relinquish control of both settings.
Original language | English |
---|---|
Pages (from-to) | 793-813 |
Number of pages | 21 |
Journal | Sustainability Science |
Volume | 19 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2024 |
Keywords
- Direct load control
- Discomfort cost
- Electric vehicle
- Prospect Theory
- Prosumer
- Smart charging