AvoidBench: A high-fidelity vision-based obstacle avoidance benchmarking suite for multi-rotors

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

8 Downloads (Pure)

Abstract

Obstacle avoidance is an essential topic in the field of autonomous drone research. When choosing an avoidance algorithm, many different options are available, each with their advantages and disadvantages. As there is currently no consensus on testing methods, it is quite challenging to compare the performance between algorithms. In this paper, we propose AvoidBench, a benchmarking suite which can evaluate the performance of vision-based obstacle avoidance algorithms by subjecting them to a series of tasks. Thanks to the high fidelity of multi-rotors dynamics from RotorS and virtual scenes of Unity3D, AvoidBench can realize realistic simulated flight experiments. Compared to current drone simulators, we propose and implement both performance and environment metrics to reveal the suitability of obstacle avoidance algorithms for environments of different complexity. To illustrate AvoidBench's usage, we compare three algorithms: Ego-planner, MBPlanner, and Agile-autonomy. The trends observed are validated with real-world obstacle avoidance experiments. Code is available at: https://github.com/tudelft/AvoidBench

Original languageEnglish
Title of host publicationProceedings - ICRA 2023
Subtitle of host publicationIEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages9183-9189
Number of pages7
ISBN (Electronic)9798350323658
DOIs
Publication statusPublished - 2023
Event2023 IEEE International Conference on Robotics and Automation, ICRA 2023 - London, United Kingdom
Duration: 29 May 20232 Jun 2023

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2023-May
ISSN (Print)1050-4729

Conference

Conference2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Country/TerritoryUnited Kingdom
CityLondon
Period29/05/232/06/23

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'AvoidBench: A high-fidelity vision-based obstacle avoidance benchmarking suite for multi-rotors'. Together they form a unique fingerprint.

Cite this