Aeropropulsive Performance Modelling of Over-The-Wing Propulsion at Incidence

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientific

23 Downloads (Pure)


A semi-emperical model is developed, able to capture the aeropropulsive performance characteristics of Over-The-Wing propellers at incidence. The model is based on an hypothesis on the interactions of the propeller- and wing-induced flow fields. Effects of these interactions on the both the thrust and lift are written in a form in which the dominant design parameters appear explicitly. Both the flow hypothesis and model results are validated using experimental data of a single Over-The-Wing propeller. It is shown that for moderate angles of attack, the propulsive thrust is reduced by the wing’s circulation. For angles of attack greater than the stall angle of the isolated wing, thrust is increased by the ingestion of low momentum flow. The propeller is not able to delay stall but induces flow over the wing, which is returned as reduced pressure over the suction side. The model predictions closely match the experimental results for thrust, but integral loading measurements of the wing are required to validate the lift predictions.
Original languageEnglish
Title of host publicationAIAA AVIATION 2023 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc. (AIAA)
Number of pages16
ISBN (Electronic)978-1-62410-704-7
Publication statusPublished - 2023
EventAIAA AVIATION 2023 Forum - San Diego, United States
Duration: 12 Jun 202316 Jun 2023


ConferenceAIAA AVIATION 2023 Forum
Country/TerritoryUnited States
CitySan Diego

Cite this