Anticipatory routing methods for an on-demand ridepooling mobility system

Andres Fielbaum*, M. Kronmüller, Javier Alonso-Mora

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)
11 Downloads (Pure)


On-demand mobility systems in which passengers use the same vehicle simultaneously are a promising transport mode, yet difficult to control. One of the most relevant challenges relates to the spatial imbalances of the demand, which induce a mismatch between the position of the vehicles and the origins of the emerging requests. Most ridepooling models face this problem through rebalancing methods only, i.e., moving idle vehicles towards areas with high rejections rate, which is done independently from routing and vehicle-to-orders assignments, so that vehicles serving passengers (a large portion of the total fleet) remain unaffected. This paper introduces two types of techniques for anticipatory routing that affect how vehicles are assigned to users and how to route vehicles to serve such users, so that the whole operation of the system is modified to reach more efficient states for future requests. Both techniques do not require any assumption or exogenous knowledge about the future demand, as they depend only on current and recent requests. Firstly, we introduce rewards that reduce the cost of an assignment between a vehicle and a group of passengers if the vehicle gets routed towards a high-demand zone. Secondly, we include a small set of artificial requests, whose request times are in the near future and whose origins are sampled from a probability distribution that mimics observed generation rates. These artificial requests are to be assigned together with the real requests. We propose, formally discuss and experimentally evaluate several formulations for both approaches. We test these techniques in combination with a state-of-the-art trip-vehicle assignment method, using a set of real rides from Manhattan. Introducing rewards can diminish the rejection rate to about nine-tenths of its original value. On the other hand, including future requests can reduce users’ traveling times by about one-fifth, but increasing rejections. Both methods increase the vehicles-hour-traveled by about 10%. Spatial analysis reveals that vehicles are indeed moved towards the most demanded areas, such that the reduction in rejections rate is achieved mostly there.

Original languageEnglish
Pages (from-to)1921-1962
Volume49 (2022)
Issue number6
Publication statusPublished - 2021


  • Anticipatory methods
  • On-demand mobility
  • Predictive methods
  • Ridepooling
  • Ridesharing


Dive into the research topics of 'Anticipatory routing methods for an on-demand ridepooling mobility system'. Together they form a unique fingerprint.

Cite this