Abstract
The control possibilities for soft robots have long been hindered by the need for reliable methods to estimate their configuration. Inertial measurement units (IMUs) can solve this challenge, but they are affected by well-known drift issues. This letter proposes a method to eliminate this limitation by leveraging the Piecewise Constant Curvature model assumption. We validate the reconstruction capabilities of the algorithm in simulation and experimentally. To this end, we also present a novel large-scale, foam-based manipulator with embedded IMU sensors. Using the filter, we bring the accuracy in IMU-based reconstruction algorithms to 93% of the soft robot's length and enable substantially longer measurements than the baseline. We also show that the proposed technique generates reliable estimations for closed-loop control of the robot's shape.
Original language | English |
---|---|
Pages (from-to) | 1945-1952 |
Number of pages | 8 |
Journal | IEEE Robotics and Automation Letters |
Volume | 9 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Calibration and Identification;
- Kinematics
- Magnetic separation
- Modeling, Control, and Learning for Soft Robots
- Robot sensing systems
- Robots
- Sensors
- Shape
- Soft robotics
- Soft sensors and actuators