Globally Guided Trajectory Planning in Dynamic Environments

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review


Navigating mobile robots through environments shared with humans is challenging. From the perspective of the robot, humans are dynamic obstacles that must be avoided. These obstacles make the collision-free space nonconvex, which leads to two distinct passing behaviors per obstacle (passing left or right). For local planners, such as receding-horizon trajectory optimization, each behavior presents a local optimum in which the planner can get stuck. This may result in slow or unsafe motion even when a better plan exists. In this work, we identify trajectories for multiple locally optimal driving behaviors, by considering their topology. This identification is made consistent over successive iterations by propagating the topology information. The most suitable high-level trajectory guides a local optimization-based planner, resulting in fast and safe motion plans. We validate the proposed planner on a mobile robot in simulation and real-world experiments.
Original languageEnglish
Title of host publicationProceedings of the IEEE International Conference on Robotics and Automation (ICRA 2023)
ISBN (Print)979-8-3503-2365-8
Publication statusPublished - 2023
EventICRA 2023: International Conference on Robotics and Automation - London, United Kingdom
Duration: 29 May 20232 Jun 2023


ConferenceICRA 2023: International Conference on Robotics and Automation
Country/TerritoryUnited Kingdom

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.


Dive into the research topics of 'Globally Guided Trajectory Planning in Dynamic Environments'. Together they form a unique fingerprint.

Cite this